

Bias Adjustment for AIRS

Larry McMillin
Climate Research and Applications Division
National Environmental Satellite, Data, and
Information Service
Washington, D.C.

Larry.McMillin@noaa.gov

Why Adjust?

- We have measured radiances from the satellite
- We have calculated radiances from a known state
- Measured and calculated radiances are compared to get
 - The change from the known atmospheric state
- For a given sate, measured and calculated must agree
- If not, then retrievals have systematic errors
- Modelers agree
 - Bias adjustment is needed
 - It should obviously should be theirs
 - What's the problem

Steps For the Adjustment

- Select the "truth"
- Select the correction model
- Collect Pairs of Observations "matches"
- Generate adjustment coefficients
- Apply the coefficients

Choices for Truth

Radiosondes

- Differences in observations times
- Radiosondes are limited to the lower atmosphere
- Moisture measurements are not accurate in dry/cold conditins

Models

- Good for early evaluations
- Good for bias errors and removing space/time differences
- Models can have errors
- Models have an internal tuning

• ARM

Sample size small

AIRCRAFT

Provide observations at single points

LIDAR

Not readily available

Choices for Truth - continued

- AIRS
 - What is better for upper level moisture?
- Other choices

What is truth?

- Truth is biased
 - Raiosondes measure the temperature of a sensor, not the air
 - Radiation corrections
 - Different types of radiosondes
 - Adjust radiosondes to a common type
- Use GPS to adjust moisture

Requirements

- Need a complete Specification of the profile
 - Surface skin temperature
 - Satellite
 - Buoys
- Upper atmospheric levels
 - Rocketsondes
 - Limb sounders
 - AIRS
- Water vapor
 - Radiosondes GPS
- Other Gases
 - Ozone
- Use retrieval for missing information

Sampling Concerns

- Scan Angle Dependence
 - Single site observations 1 observation 1 san angle
 - Spot-to-spot differences
 - Angle dependent biases
- Model
 - Truth for each observation
- Combined
 - Use model to remove spot to spot differences

Adjustment Philosophy

Reason

 Make satellite data compatible with some independent measure of the atmospheric state

Concerns

- May be adding fiction to good data
- Philosophy
 - Calculate the adjustment
 - Save it
 - Apply it as needed
 - Retrieval step
- Measured radiances are preserved
- Have a provision to redo the retrievals without the adjustment
 - Need to store 2 retrievals on the match file

Bias Adjustment or More

- Remove the mean error
 - Just one component of a systematic error
- Remove systematic differences by regression
 - Predict the adjustment, not the channel value
 - If all coefficients are small, the channel is itself plus a small change
 - Shrink to the initial state
 - Eigen vector regression
 - Add to the diagonal of predictor covariance
 - Note the normal initial state is that all coefficients are zero
 - But one can use the previous coefficients

Adjustment Model

Predictors

- Brightness temperatures
 - But not solar contaminated channels in daylight
- Cosine latitude
- Solar zenith angle
- Scan angle

Approach

- Use model to remove scan position bias
- Use model to angle adjust measurements to other bins
- Use radiosondes for final adjustment

Performance

- Better than 0.5 K for good channels based on HIRS
- Simulations
 - Doing the most realistic case now
- Improvements
 - Short wavelength channels are hard to adjust in daylight
 - Use nighttime corrections
 - Apply to daytime data to adjust the emission component
 - Delete solar channels as predictors in daylight
 - This is not a problem because
 - To use short wavelength channels in daylight
 - Need to be able to calculate the solar component
 - Include reflection, scattering, and cloud shadows
 - Can the solar effects be accurately modeled?

Plans

- Generate adjustment coefficients for the new simulated cases
- Check the adjustments on new cases
- Refine the model
 - Minimize the adjacent spot problems
 - Short wavelength in daylight
- Add storage for unadjusted retrievals in the matchup file
- Use validation system to start tuning with HIRS

Switch Topics

- Preparing OPTRAN coefficients for AIRS
- Have kCARTA running and verified
- Dry gas fit to kCARTA is shown on the next slide

